Understanding its Effects on Coatings

MOISTURE IN CONCRETE

Copyright 2008
Moisture, pH and Alkalies

- Freshly placed Portland Cement pH 12.5
 - Provides passivation of embedded steel
Carbon Dioxide and ambient air react

- Over time concrete pH will reach 8.5
- Carbonizing starts from the surface and moves down at a rate of 0.04” per year
- Carbonization proceeds most quickly at 50% RH and ceases if concrete is submerged
Effects of Alkalis and Moisture

- Alkalis can be a problem for coatings if
 - Surface pH is too high
 - Moisture traveling up through concrete bring alkalies to the surface
Sources of Moisture

- **Weather**
 - Precipitation before, during and after concrete placement
 - Destabilize prepared sub-base
 - Saturated blotter layer can increase concrete drying time
 - Erosion of top surface of newly placed concrete
 - Creates high moisture content in concrete
- **Capillary Rise**
 - High water tables and small enough soil granule size can result in capillary rise of water
Hydrostatic Pressure

- High outside water table
Osmosis

- Soluble salts at the concrete surface and the presence of moisture create osmotic blistering in coatings
• **Subslab Vapor**
 - Subgrade soil RH at 100%
 - State of equilibrium is achieved between low and high RH
- Ambient RH
 - Moisture in the air and the top surface of the concrete reach equilibrium
Dew Point

- Concrete surface temperature is lower than the dew point of the ambient air
Cement and Concrete

- **Components of Concrete**
 - **Cement**
 - Reacts chemically with water, even underwater
 - **Aggregates**
 - 60% – 75% of volume
 - **Admixtures**
 - Water reducing, set controlling and shrinkage reducing
 - **Supplementary Materials**
 - Pozzolans (fly ash, ground slag, silica fume)
 - Improve concrete properties (workability and finishability)
Cement and Concrete

- **Hydration**
 - Consumption of water through chemical reaction
 - Forms gel as it grows out of cement particles
 - Gel solidifies into rock like state
 - 50% of hydration in 7 days
 - 90% of hydration in 28 days
 - Water cement ratio critical
 - Theoretically sufficient water for hydration process at .38 water to cement ratio
Hydrated Concrete
Concrete Curing

- Concrete must be kept moist during curing to build properties.
- Hydration of cement will stop if RH of the concrete drops below 80%.
Porosity

- **Capillary pores**
 - Capillary pores are remnants of water filled spaces
 - Higher water to cement ratios will increase capillary pores

- **Gel pores**
 - Left over from hydration process
 - Much smaller in size

- **Entrained air**
 - Vary in size (.0004 to .4 in)
 - Do not generally contain water, but can accumulate in some cases
Permeability

- New concrete has continuous capillary pore system
 - Permeability is high
- Capillary pore system becomes discontinuous through hydration
 - Except with water to cement ratios that exceed .70

<table>
<thead>
<tr>
<th>Water-cement ratio</th>
<th>Time required</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.40</td>
<td>3 days</td>
</tr>
<tr>
<td>0.45</td>
<td>7 days</td>
</tr>
<tr>
<td>0.50</td>
<td>14 days</td>
</tr>
<tr>
<td>0.60</td>
<td>6 months</td>
</tr>
<tr>
<td>0.70</td>
<td>1 year</td>
</tr>
<tr>
<td>>0.70</td>
<td>impossible</td>
</tr>
</tbody>
</table>

* Powers 1959.
Permeability of concrete depends on water to cement ratio
Drying of Concrete

- Concrete must be sufficiently dry to develop adequate bond of coating materials.
- A typical yard of concrete with a 0.5 water-cement ratio contains 275 lb of water. About half will be used during hydration. The other half is free water.

<table>
<thead>
<tr>
<th>Concrete type</th>
<th>Water-cement ratio</th>
<th>Time to 90% RH, weeks</th>
<th>Time to 85% RH, weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical residential concrete</td>
<td>>0.5</td>
<td>>12</td>
<td>>19</td>
</tr>
<tr>
<td>Concrete with some self-desiccation</td>
<td>0.38 – 0.50</td>
<td>9 – 12</td>
<td>15 – 19</td>
</tr>
<tr>
<td>Rapid-drying concrete</td>
<td>0.38 – 0.32</td>
<td>15 – 19</td>
<td>10 – 15</td>
</tr>
<tr>
<td>Self-drying concrete</td>
<td><0.32</td>
<td>3 – 5</td>
<td>6 – 10</td>
</tr>
</tbody>
</table>

* Swedish Concrete Association.
Concrete Drying Stages

- **Drying Stage 1**
 - Pores in freshly placed concrete are saturated with liquid water and drying begins by evaporation from exposed surface.
Concrete Drying Stages

- **Drying Stage 2**
 - When moisture has retreated below the surface, movement depends on fluid flow along the surface pores and evaporation into the pores
Concrete Drying Stages

- **Drying Stage 3**
 - When moisture is no longer continuously wetting the surface of pores, moisture must evaporate within the body of the paste and diffuse toward the surface.
Concrete Drying Stages

- **Drying Stages**
 - Stage 1 has a constant rate and depends on air movement and RH. Stage 2 and 3 depend on the properties of the cement paste.
<table>
<thead>
<tr>
<th>Days</th>
<th>w/c = 0.4</th>
<th>w/c = 0.5</th>
<th>w/c = 0.6</th>
<th>w/c = 0.7</th>
<th>w/c = 0.8</th>
<th>w/c = 0.9</th>
<th>w/c = 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>16.5</td>
<td>26.7</td>
<td>39.8</td>
<td>69.9</td>
<td>92.6</td>
<td>113.1</td>
<td>150.2</td>
</tr>
<tr>
<td>7</td>
<td>9.3</td>
<td>16.1</td>
<td>26.4</td>
<td>40.5</td>
<td>56.2</td>
<td>73.7</td>
<td>92.6</td>
</tr>
<tr>
<td>14</td>
<td>6.2</td>
<td>10.3</td>
<td>17.1</td>
<td>27.8</td>
<td>38.1</td>
<td>49.4</td>
<td>62.4</td>
</tr>
<tr>
<td>28</td>
<td>4.1</td>
<td>6.5</td>
<td>11.3</td>
<td>18.2</td>
<td>25.7</td>
<td>33.9</td>
<td>40.5</td>
</tr>
<tr>
<td>60</td>
<td>2.7</td>
<td>4.5</td>
<td>7.5</td>
<td>11.7</td>
<td>16.1</td>
<td>20.9</td>
<td>25.4</td>
</tr>
<tr>
<td>90</td>
<td>2.4</td>
<td>3.8</td>
<td>6.5</td>
<td>9.9</td>
<td>13.0</td>
<td>17.1</td>
<td>20.6</td>
</tr>
<tr>
<td>180</td>
<td>1.7</td>
<td>3.1</td>
<td>5.1</td>
<td>7.5</td>
<td>10.3</td>
<td>13.4</td>
<td>16.5</td>
</tr>
<tr>
<td>365</td>
<td>1.4</td>
<td>2.4</td>
<td>4.5</td>
<td>6.5</td>
<td>8.6</td>
<td>11.3</td>
<td>14.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Days</th>
<th>w/c = 0.4</th>
<th>w/c = 0.5</th>
<th>w/c = 0.6</th>
<th>w/c = 0.7</th>
<th>w/c = 0.8</th>
<th>w/c = 0.9</th>
<th>w/c = 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>17.1</td>
<td>27.4</td>
<td>39.4</td>
<td>58.3</td>
<td>72.0</td>
<td>83.7</td>
<td>93.3</td>
</tr>
<tr>
<td>7</td>
<td>10.3</td>
<td>16.5</td>
<td>23.0</td>
<td>28.8</td>
<td>33.6</td>
<td>37.7</td>
<td>42.5</td>
</tr>
<tr>
<td>14</td>
<td>6.2</td>
<td>9.9</td>
<td>13.4</td>
<td>16.5</td>
<td>19.2</td>
<td>21.6</td>
<td>23.3</td>
</tr>
<tr>
<td>28</td>
<td>3.8</td>
<td>6.2</td>
<td>9.9</td>
<td>10.3</td>
<td>11.7</td>
<td>12.3</td>
<td>13.0</td>
</tr>
<tr>
<td>60</td>
<td>2.7</td>
<td>4.1</td>
<td>5.5</td>
<td>6.9</td>
<td>7.5</td>
<td>8.2</td>
<td>8.6</td>
</tr>
<tr>
<td>90</td>
<td>2.4</td>
<td>3.4</td>
<td>4.8</td>
<td>5.8</td>
<td>6.2</td>
<td>6.5</td>
<td>7.2</td>
</tr>
<tr>
<td>180</td>
<td>1.7</td>
<td>2.7</td>
<td>3.8</td>
<td>4.5</td>
<td>4.8</td>
<td>4.8</td>
<td>5.1</td>
</tr>
<tr>
<td>365</td>
<td>1.4</td>
<td>2.1</td>
<td>3.1</td>
<td>3.4</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Days</th>
<th>w/c = 0.4</th>
<th>w/c = 0.5</th>
<th>w/c = 0.6</th>
<th>w/c = 0.7</th>
<th>w/c = 0.8</th>
<th>w/c = 0.9</th>
<th>w/c = 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>17.8</td>
<td>27.4</td>
<td>39.1</td>
<td>55.9</td>
<td>65.8</td>
<td>72.7</td>
<td>78.2</td>
</tr>
<tr>
<td>7</td>
<td>10.6</td>
<td>15.8</td>
<td>20.9</td>
<td>26.1</td>
<td>30.9</td>
<td>35.0</td>
<td>39.4</td>
</tr>
<tr>
<td>14</td>
<td>6.5</td>
<td>9.6</td>
<td>12.7</td>
<td>15.8</td>
<td>17.1</td>
<td>18.9</td>
<td>20.6</td>
</tr>
<tr>
<td>28</td>
<td>3.8</td>
<td>5.8</td>
<td>7.9</td>
<td>8.9</td>
<td>9.6</td>
<td>10.3</td>
<td>11.0</td>
</tr>
<tr>
<td>60</td>
<td>2.4</td>
<td>3.8</td>
<td>4.5</td>
<td>5.1</td>
<td>5.5</td>
<td>5.8</td>
<td>6.2</td>
</tr>
<tr>
<td>90</td>
<td>1.7</td>
<td>2.7</td>
<td>3.4</td>
<td>3.8</td>
<td>4.1</td>
<td>4.5</td>
<td>4.8</td>
</tr>
<tr>
<td>180</td>
<td>1.0</td>
<td>1.7</td>
<td>2.1</td>
<td>2.1</td>
<td>2.4</td>
<td>2.7</td>
<td>3.1</td>
</tr>
<tr>
<td>365</td>
<td>0.7</td>
<td>1.0</td>
<td>1.4</td>
<td>1.4</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
</tbody>
</table>

* Brewer 1965.
Drying of Lightweight Concrete

- Lightweight concrete takes twice as much time to dry than regular concrete.
Measuring Moisture in Concrete

- **Qualitative Moisture Tests**
 - Involves taping an 18 inch square plastic sheet to the surface of the concrete for 24 hours.
 - This test only shows that moisture is present-not the amount of moisture.
Measuring Moisture in Concrete

- Electrical Impedance device
 - Transmits a radio-frequency alternating-current and can accurately detect moisture down to a depth of 2 inches.
Measuring Moisture in Concrete

Contour map showing concrete surface measured with electrical impedance device
Measuring Moisture in Concrete

- Qualitative Moisture Tests
 - Moisture vapor emission test
Measuring Moisture in Concrete

- Relative Humidity Measurement
 - Measuring RH within the concrete slab when placed at 40% of the slabs depth.
 - Measurements must be taken after 72 hours.
Measuring Moisture in Concrete

- The moisture gradient formed as concrete dries will redistribute itself after a floor coating is applied over the top surface of the slab.
Recommendations Before Coating Concrete

- Concrete on grade with a propensity for high moisture content should be treated with AquaLok II
- Maximum moisture content at 4.5% when using an electrical impedance device
- Maximum 3 lb per 1,000 square feet in a 24 hour period when using a calcium chloride test kit
- Maximum 80% relative humidity when measuring with a relative humidity device
Contact Us!

VersaFlex Incorporated
87 Shawnee Avenue
Kansas City, KS 66105

913-321-9000

www.versaflex.com